Climate change and Australia’s plantations

REGIONAL REPORT 6: Victoria and southern New South Wales
Eucalypt plantations
Introduction

Plantations have been managed for wood production in Australia for over 100 years, and silvicultural practices for establishment and growth are well-developed, particularly for the more established parts of the industry such as the softwood sector (Snowdon and James 2007). Australia’s climate is becoming more variable, and this represents a potential opportunity or threat to the viability of Australia’s plantations, and may mean changes in management or location of plantations may be required to capitalise on opportunities and reduce threats.

The bulk of Australia’s eucalypt plantations are located in cool temperate south western and south eastern Australia (Figure 1). This report summarises the possible consequences of more variable climate for eucalypt plantations in eastern and central Victoria and southern NSW eucalypt plantations by 2030, in terms of stand productivity and wood properties, the likelihood of stand failure due to drought and implications of this for final stems per hectare, risks from fire and risks and impacts of pests.

The report also presents possible adaptation strategies to reduce negative impacts of climate change on plantation productivity. This work was done as part of a FWPA-funded project, and more details can be found in the project final report, ‘Adaptation strategies to manage risk in Australia’s temperate plantations’.

Figure 1 Current distribution of eucalypt plantations in Australia (National Forest Inventory 2012), and the focal region for this report (blue box).
2030 Victoria and southern NSW Regional Scorecard

2030 Volume change with no elevated CO₂ (Medium fertility, deep soils)

Key Points

Climate
• The climate is predicted to be warmer and drier with average temperature increases of 0.74 degrees and a 7% decrease in rainfall.

Stand Volume and survival
• In the absence of an elevated CO₂ response, we can anticipate either no change or in decreases up to -15% in some parts along the coast or the dry inland regions.
 • Areas that are potentially limited by cold temperatures may see increases in productivity as temperatures warm.
 • The number of rotation failures and the level of mortality increases in the dry inland areas at the edges of the estate but overall mortality is minimal

Adaptation option

Fire risk
• There are moderate increases in risky fire weather (forest fire danger index, FFDI, >25) predicted for the majority of the estate. There are some significant increases in the dry inland areas and some coastal areas

Pest risk
• Areas at high risk of pest damage are unlikely to change much by 2030
• Areas with optimal climate (EI) have climatic conditions conducive to high levels of defoliation (>60%) in most years
Key points

- Where there is no response to elevated CO2 production is predicted to range from losses up to 25% to positive responses of 25%. The southern parts of the estate are generally predicted to remain similar under the median scenario with decreases of up to 25% in the least favourable scenario. These areas are amongst the more productive parts of the region. The colder areas around the Australian Alps are likely to see increases in production as the temperature limitations are reduced. Inland areas around Shepparton and Echuca are likely to incur significant reductions in productivity.

- In regions where productivity is predicted to decrease (less than 25% loss), adaption through changes in silviculture may mitigate the potential losses in production.

- Where there is predicted response to elevated CO2, productions is positive across both deep and shallow soils, bar some inland regions (Shepparton to Echuca). This area is likely to be significantly impacted under the least favourable and median futures. It is predicted there will be significant reductions in survival and adaptation options are limited.

- The largest increases are generally seen where production is low and small absolute gains can have a large percentage increase.
Adaptation to changes in production and mortality

• Adaptation strategies examined were reduced spacing, and reduced spacing + fertiliser application
• Without these strategies all three reference sites are predicted to experience a drop in production by 2030

Site A: Modelling suggests reducing the number of sph from 1000 to 800 resulted in little change in production but reduced mortality levels to insignificant levels.
• Applying fertiliser may increase production but there is an increased risk of mortality, on average 5% loss but up to 25%

Site B: Modelling suggests reducing the number of sph from 1000 to 800 resulted in little change in production (-2%) but reduced mortality levels to insignificant levels.
• Applying fertiliser may increase production without increasing risk when planting at 800 sph and a small increase in risk at 1000 sph.

Site C: At some locations we predict a high proportion of failures irrespective of silviculture, giving a b-modal distribution of yields, with those that fail during critically dry years at one end of the scale and those that survive yielding modest production.
• One those very drought prone sites fertiliser application increases the risk of failure and reduces overall production through exacerbated drought effects.
Fire danger is characterised using the Forest Fire Danger Index (FFDI).

For Victoria and Southern NSW, FFDI is not predicted to change much during autumn and but median FFDI may increase from August to April.

The number of days with FFDI>25 suggests a lengthening of the fire season at both ends with the largest increases inland of the Australian Alps.

- Current fuel loads range from 1 – 50t ha$^{-1}$
- Litter amounts are projected to increase by around 7% overall by 2030
- The largest increases are predicted to be in the cold inland regions (5 to 25%) and the biggest reductions in the southern and western regions (-10 to 0%) in the worst case.
Current number of potential fire damage days

- Days with potential fire intensity >4000 kWm⁻¹ are likely to be difficult to suppress and cause significant damage.
- Damage will occur at lower intensities but only smaller areas are expected to be affected.

Change in damage days for best case (left) and worst case (right) climate change

- Average number of fire damage days under current climate are higher than fire danger days, because of the influence of litter amount on fire intensity.
- Inland areas of Victoria, southern NSW and western coastal regions have low numbers of fire damage days (low absolute fuel loads, 5-60 days) while parts of the coastal areas have a higher risk (high absolute fuel loads, 100+ days) – the opposite patterns seen for FFDI.
- The number of fire damage days is projected to increase by 2030 across all regions, in particular the inland areas (10 - 40 days) across the region.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Management Strategy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire weather</td>
<td>Regional fire response plans</td>
<td>Climate change is expected to change the frequency and intensity of fires but not the nature of fire.</td>
</tr>
<tr>
<td>Fuel loads</td>
<td>Clean up debris from under plantations, Prune branches, Weed control</td>
<td>Maybe a strategy for high risk areas.</td>
</tr>
<tr>
<td>Fire spread</td>
<td>Landscape design to limit fire spread and aid suppression</td>
<td>Opportunities to avoid fire by relocating plantation estate were not identified.</td>
</tr>
</tbody>
</table>
Pest damage may amplify negative effects of climate change on stand productivity. Defoliators are the main pest types in the region (Table 2). For 2 indicative sites (wetter and drier, and either low, medium or high fertility), we predict that:

- Maximum reduction in final volume will average 15% at these sites (~30-70 m3/ha), with greatest impact occurring with high defoliation and high fertility (Figure 11)
- There will be considerable between-site variability in responses
- Greatest impact of defoliation on final stand volume will occur when defoliation is high and fertility is high
- Later age defoliation is likely to have a greater impact than early age defoliation
- Multiple defoliations will have a substantially greater impact on volume than single events, resulting in up to 20% reductions in final volume (~40-100 m3/ha) particularly at high rainfall sites (Figure 12)
Possible effects of climate change on abundance of current key pests in the region

<table>
<thead>
<tr>
<th>Key pests</th>
<th>Damage type</th>
<th>Damage age</th>
<th>Warmer temps</th>
<th>heatwaves</th>
<th>Drought</th>
<th>Storms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christmas beetles</td>
<td>Defolation</td>
<td>All</td>
<td>↑activity</td>
<td>↑mortality if soil temp >30°C</td>
<td>↓larval survival and emergence</td>
<td>Wet soil a trigger for adult emergence</td>
</tr>
<tr>
<td>Eucalypt weevil</td>
<td>Defolation</td>
<td>All</td>
<td>↑generation ↓mortality</td>
<td>↑mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring beetles</td>
<td>Defolation</td>
<td>All</td>
<td>↑activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autumn gum moth</td>
<td>Defolation</td>
<td>Seedlings and young trees</td>
<td>↑generation ↓mortality</td>
<td>↑autumn adult emergence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucalypt beetles</td>
<td>Defolation</td>
<td>All</td>
<td>↑generation ↓mortality</td>
<td>↑mortality</td>
<td>Shorter diapause</td>
<td></td>
</tr>
<tr>
<td>Gum leaf skeletoniser</td>
<td>Defolation</td>
<td>All</td>
<td>↑generation ↓mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creis psyllid</td>
<td>Defolation, discoloration</td>
<td>Seedlings and young trees</td>
<td>↑generation ↓mortality</td>
<td>↑mortality</td>
<td>↓abundance</td>
<td>↑abundance if host is waterlogged</td>
</tr>
<tr>
<td>Septoria leaf blight</td>
<td>Defolation</td>
<td>All</td>
<td>↑spores and growth if also higher humidity</td>
<td>↓spores and growth</td>
<td>↑spores and growth if also higher humidity</td>
<td></td>
</tr>
<tr>
<td>Mycosphaerella leaf disease</td>
<td>Defolation</td>
<td>Pre canopy closure</td>
<td>↑spores and growth if also higher humidity</td>
<td>↓spores and growth</td>
<td>↑spores and growth if also higher humidity</td>
<td></td>
</tr>
<tr>
<td>Eucalypt stem borer</td>
<td>Stem damage</td>
<td>Post canopy closure</td>
<td>↑abundance</td>
<td>↓abundance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The main pests damaging eucalypt plantations in this region are defoliators.
- Defoliating insects and stem borers are likely to be favoured by warmer mean temperatures but generally not by heatwaves.
- Foliar diseases will be favoured by warmer mean temperatures but increasing droughts will likely reduce the abundance and distribution of these pests.
- Stem borers are attracted to stressed trees and may amplify drought impacts.
- Management strategies to control defoliation impacts are limited (Table 3), and include fertilising to promote crown recovery, thinning to reduce drought stress and monitoring/controlling insect populations.

Table 3. Possible management strategies for reducing the impacts of pests on stand productivity

<table>
<thead>
<tr>
<th>Damage type</th>
<th>Management strategy</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defoliation</td>
<td>Fertilise to promote crown recovery</td>
<td>May increase drought mortality risk</td>
</tr>
<tr>
<td>Stem damage</td>
<td>Thin plantations to manage drought stress</td>
<td>Can help manage drought risk</td>
</tr>
<tr>
<td>All</td>
<td>Monitor populations and control when populations are high</td>
<td>Requires understanding of threshold population numbers for risk monitoring and modelling</td>
</tr>
</tbody>
</table>
Methods

CLIMATE: Historical climate data were obtained from the Bureau of Meteorology’s Data drill, consisting of interpolated grids splined using data from meteorological station records at a scale of 0.05 degrees, covering the years 1975 – 2005. We used the Climate Futures Framework (Whetton et al 2012) to select climate models that represented the worst case, most likely and best case climate futures for the main temperate plantation regions in Australia, resulting in 4 – 5 climate models being run per region, using an A2 emissions scenario. A regular grid of 0.1 degree was used across all regions, and climate data were generated centred around 2030. We used the McVicar et al (2008) mean wind data set in the fire danger modelling.

PRODUCTIVITY AND DROUGHT: Productivity estimates were updated from previous analyses, using the process-based model CABALA. Six standard soil types were set up (low, medium and high fertility for each of shallow and deep soil depth) to provide broad representation of soils in each plantation region. The silvicultural regime was a 10 year rotation planted at 1000 stems/ha, an initial fertiliser application of 50 kg/ah urea, and no further silviculture except an at-planting fertiliser application. Twenty separate rotations were simulated by running the model with 20 different planting dates over a 30 year block of weather. For each region simulations included the factorial combination of 6 soils, 4-5 climate models, 3 timeframes and 20 planting dates. The number of surviving rotations out of 20 was calculated to estimate probability of mortality occurring, and the mean stems/ha at the end of surviving rotations was calculated. For all combinations, the model was run assuming either no acclimation or full acclimation of photosynthesis to higher atmospheric CO$_2$ concentration, reflecting the high uncertainty around how plantations will respond to higher CO$_2$.

FIRE: Fuel loads were calculated as the litter load estimated using CABALA. Weeds or debris on-site were not included. The Forest Fire Danger Meter model (McArthur 1967) was used to calculate daily forest fire danger index, which was used to characterise fire danger. Fire damage days were calculated as the number of days with plantation fire intensity above 4000 kw/m.

PESTS: Tables of key plantation pests were produced and potential responses to climate were summarised using literature review. The niche model CLIMEX was used to examine potential changes in the distribution of 5 eucalypt pests. The process-based model CABALA was used at selected high and low productivity sites in each region to identify stand responses to defoliation, using the methods described above.

ADAPTATION: CABALA was used to examine how initial spacing or fertilising might be used to manage drought. Effects on final stand density, probability of stand mortality, stand volume and wood properties were estimated, for a subset of indicative sites per region. For fire and pests risk management, adaptation strategies are suggested based on literature and expert advice.

Further information

Dr Libby Pinkard
CSIRO Land and Water
Private Bag 12, Hobart, 7001 Australia
Libby.Pinkard@csiro.au

Jody Bruce
CSIRO Land and Water
Private Bag 12, Hobart, 7001 Australia
Jody.Bruce@csiro.au

References

Other project outputs

FINAL PROJECT REPORT

Regional report 1: South west Western Australia eucalypt plantations

Regional report 2: South west Western Australia radiata pine plantations

Regional report 3: Green Triangle eucalypt plantations

Regional report 4: Green Triangle radiata pine plantations

Regional report 5: Eastern Victoria/southern NSW eucalypt plantations

Regional report 6: Eastern Victoria/southern NSW radiata pine plantations

Regional report 7: Northern NSW radiata pine plantations

Regional report 8: Tasmania eucalypt plantations

Regional report 9: Tasmania radiata pine plantations

Spatial database: all data generated in the project is available via a spatial database (https://data.csiro.au/dap/)

Updated CABALA model, contact:

Jody Bruce
CSIRO Land and Water
Private Bag 12, Hobart, 7001, Australia
Jody.Bruce@csiro.au

Citation

Copyright and disclaimer

© 2015 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.