Tools for nutrition management in eucalypt plantations

FWPA Project: PNC304-1213

Chris Szota
The University of Melbourne

cszota@unimelb.edu.au
Steering committee

• **Chair:** Stephen Elms (HVP)
• Tom Baker and Peter Hopmans (UniMelb)
• Ben Bradshaw (ABP)
• John Wiedemann (WAPres)
• Paul Adams (Forestry TAS)
• Mike Powell (Forestry SA)
• Ashley Goldstraw (Midway)
Overall project aim

• To develop tools which identify plantations more likely to show a growth response to fertiliser
 – Tools that rely on relatively easy-to-measure site variables, including:
 • Climate
 • Soil nutrient status
 • Foliar nutrient status
Fertiliser use in eucalypt plantations

• May et al., 2009: Review of fertiliser use in Australian forestry
 – Large discrepancies between growers:
 • Expected magnitude and duration of growth response
 • Methods of managing nutrition/prioritising application of fertiliser
Expectations of growth response to fertiliser application

- Estimations a mix of:
 - Empirical evidence or knowledge
 - Educated guess

May et al., 2009
Site selection methods for fertiliser application

- Establishment
 - Soil
- Young
 - Foliar
- Mid-rotation
 - ‘Site quality’
- Later-age
 - ‘Site quality’

May et al., 2009
Site selection methods for fertiliser application

- Estimations are representative of ‘confidence’
 - No information given on specific method

Estimated confidence in method = 65%

May et al., 2009
Need more input...

• Prediction of growth responses to fertiliser application was identified as a major knowledge gap

 May et al., 2009

• New trial networks take substantial time and financial input
 – Delay in receiving results: 5-10 years
 – Can be grower/region specific
 • Strong collaboration needed
Our approach

- Speed up this process by analysing existing datasets
Criteria for experiments

• Develop tools that rely on relatively easy-to-measure site variables, including:
 – Climate
 – Soil nutrient status
 – Foliar nutrient status

• To be included, experiments had to have:
 – Pre-treatment soil and/or foliar nutrient analysis
 • Major screening tool → removed the bulk of experiments
Criteria for experiments

• To be included, experiments also had to have:
 – A minimum of two treatments
 • A high rate of N (±P) and an unfertilised control
 – A minimum of three replicates
 – Treatments applied in spring
 – Regular growth measures (every 1-3 years)
 • Diameter at 1.3 m of all trees
 • Height of the 100 largest-diameter trees ha⁻¹
 – Minimum 60% survival
 – Similar pre-treatment volumes
Details of experiments used

<table>
<thead>
<tr>
<th>Application timing</th>
<th>Establishment</th>
<th>Mid-rotation</th>
<th>Establishment and mid-rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>EST</td>
<td>MID</td>
<td>EST+MID</td>
</tr>
<tr>
<td>~Age at application (years)</td>
<td>Age 0 and 1</td>
<td>Age 4-5</td>
<td>Age 0, 1 and 4</td>
</tr>
<tr>
<td>Number of experiments</td>
<td>28</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Fertiliser applied at age 0</td>
<td>40-52 kg ha$^{-1}$ N and 27-35 P kg ha$^{-1}$</td>
<td>0</td>
<td>40-52 kg ha$^{-1}$ N and 27-35 P kg ha$^{-1}$</td>
</tr>
<tr>
<td>Fertiliser applied at age 1</td>
<td>200 kg ha$^{-1}$ N and 50-62 kg ha$^{-1}$ P</td>
<td>0</td>
<td>200 kg ha$^{-1}$ N and 50-62 kg ha$^{-1}$ P</td>
</tr>
<tr>
<td>Fertiliser applied at age 4-5</td>
<td>0</td>
<td>250 kg ha$^{-1}$ N</td>
<td>200 kg ha$^{-1}$ N</td>
</tr>
<tr>
<td>~Age at measurement (years)</td>
<td>2-5, 7 and 10</td>
<td>5-8 and 10</td>
<td>2 and 4-10</td>
</tr>
</tbody>
</table>
Sites by climate

ACT SILO MAR (mm yr\(^{-1}\)) vs ACT SILO MAE (mm yr\(^{-1}\))

- EST
- MID
- EST+MID
Sites by baseline productivity

ESTABLISHMENT

128 m³ ha⁻¹

MID-ROTATION

214 m³ ha⁻¹

COMBINED

172 m³ ha⁻¹
Approach to data analysis

• Because sites differed between application timings:
 – We largely described response within each application
 – Tried to avoid comparing between timings

• Our FWPA report describes the data in two ways:
 – First, we described the magnitude and duration of growth response to fertiliser over time
 – Second, we developed models for predicting growth response to fertiliser

• Today, we focus on building predictive models, the core aim of the project
Approach to data analysis

• Site mix allowed us to build separate predictive models for:
 – Establishment fertiliser application (n=28)
 – Mid-rotation fertiliser application (n=21*)

• Highly involved dataset
 – Today, we look at establishment fertiliser models
 • Much more accurate than mid-rotation
Approach to model development

- **Multiple linear regression analysis**
 - Use multiple explanatory (x) variables to predict a suitable response variable (y)

 - Response variable (y):
 - Growth response to fertiliser

 - Explanatory variables (x):
 - Pre-treatment climate, soil and/or foliar-based site factors
Growth response to fertiliser: The response variable

• Generic stand volume equation to convert from plot measures to standing volume:
 – \(\frac{1}{3} \times \sum BA \times MDH \)
 • BA = all trees in plot
 • MDH = mean dominant height of the 100 largest-diameter trees

• Calculated for all control and treatment plots at each measurement
Growth response to fertiliser: The response variable

• Converted to a **relative growth response** for each site
 – to be able to plot all sites together when building predictive models

• **Volume relative to control**

• = [(mean treatment volume – mean control volume) / mean control volume] x 100%
 – % ↑ or ↓ in volume relative to control
 – Very different to **relative volume growth rate** and other relative measures
Growth response to fertiliser: The response variable

• How long after application should we assess growth response?

• Establishment fertiliser models:
 – At age 2 (1 year post-application)
 – At age 4 (at mid-rotation)
 – At age 10 (at end-of-rotation)
Climate-based explanatory variables

- **ESOCLIM**
 - Long-term average 1921-1995

- **SILO data drill**
 - Long-term average 1889-2012
 - ‘Actual-over-rotation’, i.e., during experiment

- **Calculated averages**
 - Daily data condensed into yearly
 - Calculated average for years of interest
Climate-based explanatory variables

- Mean annual rainfall
- Mean annual evaporation
- Mean annual climate wetness index
 - (Rainfall / evaporation)
- Mean annual maximum temperature
- Mean annual minimum temperature
- Mean annual solar radiation
Groundwater: (almost) an explanatory variable

- Groundwater
 - Limited site surveys completed
 - Combined with online tools:
 - Visualising Victoria’s Groundwater
 - WaterConnect

- Resolution not good enough to use as a continuous explanatory variable
 - BUT, sites could be split using presence/absence
 - We initially split our data using this, but there were no differences → pooled
Soil-based explanatory variables

- Composite subsamples (~10 cores per plot)
- From inter-rows (not cultivated)
- From control plots (3-5 per site)

- Kept cool in transit then dried, ground and analysed
Soil-based explanatory variables

• Establishment fertiliser models:
 – Variables available for 0-10 and 10-20 cm depths
 – 1:5 EC, pH
 – Potentially available N (Hot-KCl NH$_4$+NO$_3$)
 – Total N, total C, Bray2 P
Foliar-based explanatory variables

• Establishment fertiliser models:
 – Sampled at age 1; Juvenile leaves

• Sampling:
 – YFEL: 4-6 leaves from 5-6 trees
 – Top 1/3rd of the crown
 – Control plots
 – Kept cool in transit then dried, ground and analysed
Foliar-based explanatory variables

• Foliar variables analysed:
 – N, P, K, S
 – Na, Ca, Mg
 – Cu, Zn, Mn, Fe, B

• Derived ratios:
 – N:P, N:S, N:K
 – FOL N/MAI ratio
 • ‘dilution of N’ → [FOL N] / pre-treatment MAI
Regression approach

• Ran simple regression first on each variable
 – Linear and non-linear regression
 – Looking at individual predictors of growth response to fertiliser at age 2, 4 and 10

• Ran multiple linear regression second
 – Looking at combinations of predictors of growth response to fertiliser at age 2, 4 and 10
Establishment fertiliser models

Response at age 2
(1 year post-fertiliser application)

Simple regression results
Single predictors of growth response
‘Min-N’, also referred to as ‘Potentially mineralisable N’ = Hot KCl extraction of NO$_3$ and NH$_4$.

$R^2 = 0.62; P < 0.001$

Pretty good!
$R^2 = 0.62; P = <0.001$

$R^2 = 0.28; P = 0.016$
$R^2 = 0.62; P = <0.001$

$R^2 = 0.28; P = 0.016$

$R^2 = 0.19; P = 0.041$

$R^2 = 0.34; P = 0.002$
Separate group?
Split by dataset, groundwater, trace elements...everything we had
Couldn’t identify the cause...
$R^2 = 0.15; P = 0.041$

$R^2 = 0.33; P = 0.33$
Volume relative to control (%)

FOL N (g kg\(^{-1}\))

\[R^2 = 0.15; \ P = 0.041 \]

FOL N:S

\[R^2 = 0.33; \ P = 0.33 \]

FOL Ca (g kg\(^{-1}\))

\[R^2 = 0.41; \ P = <0.001 \]
$R^2 = 0.15; P = 0.041$

$R^2 = 0.33; P = 0.33$

$R^2 = 0.41; P = <0.001$

$R^2 = 0.23; P = 0.010$
Establishment fertiliser models

• **Simple regression**

• **Other response ages:**
 – At age 4 (3 years post-application; at mid-rotation)
 • Min-N ($R^2 = 0.28$, $P = 0.004$)
 • Bray 2P ($R^2 = 0.43$, $P=<0.001$)
 • Foliar N ($R^2 = 0.19$, $P = 0.019$)

 – At age 10 (end of rotation)
 • No soil variables related to growth response
 • No foliar variables related to growth response
Establishment fertiliser models

• **Simple regression outcomes:**
 – Only one strong individual predictor (soil Min-N)
 • Only effective shortly after application (at age 2)
 – No strong individual predictors of response to establishment fertiliser beyond age 2
Multiple Linear Regression

• **All subsets regression**, restricted by number of sites (n=28)

• Combinations of variables related to N and P

• ‘Batched’ = created 3 different model types:
 – Soil-based, foliar-based, combined
Multiple Linear Regression

• Used Adj-R\(^2\) and Mallow’s \(C_p\) to select ‘best models’
 – Highest Adj-R\(^2\), lowest \(C_p\)
 • Lowest # of explanatory variables for highest Adj-R\(^2\)

• Correlation analysis: models don’t contain related variables
 – ALSO! Allowed substitution of variables in ‘best’ models
 – Practical reasons – create alternative models depending on your available data
Establishment fertiliser models

Response at age 2
(1 year post-fertiliser application)

Multiple linear regression results
Best soil-based model (at age 2)

\[y = -1.509 \times \text{Min-N} + 0.083 \times \text{ESO MAR} + 20.0 \]

\[R^2 = 0.70; \; C_p = -2.37 \]

\[P = <0.001 \]
Best soil-based model (at age 2)

\[y = -1.509 \times \text{Min-N} + 0.083 \times \text{ESO MAR} + 20.0 \]
\[R^2 = 0.70; \quad C_p = -2.37 \]
\[P = <0.001 \]

Long-term average annual rainfall from ESOCLIM

Volume relative to control (%)
Best soil-based model (at age 2)

\[y = -1.509 \times \text{Min-N} + 0.083 \times \text{ESO MAR} + 20.0 \]

\[R^2 = 0.70; \quad C_p = -2.37 \]

\[P = <0.001 \]

Min-N was a strong individual predictor \((R^2 = 0.62)\)

Long-term site MAR only ↑ \(R^2\) by 8%
Best foliar-based model (at age 2)

\[y = -5.13 \times \text{FOL N:P} - 15.69 \times \text{FOL N:S} + 318.9 \]

\[R^2 = 0.49; \quad C_p = 5.38 \]

\[P = <0.001 \]
Best foliar-based model (at age 2)

\[y = -5.13 \times \text{FOL N:P} - 15.69 \times \text{FOL N:S} + 318.9 \]

- \(R^2 = 0.49; \ C_p = 5.38 \)
- \(P = <0.001 \)

Not as good as soil model
Best foliar-based model (at age 2)

\[y = -5.13 \times \text{FOL N:P} - 15.69 \times \text{FOL N:S} + 318.9 \]

\[R^2 = 0.49; \quad C_p = 5.38 \]

\[P = <0.001 \]

Not correlated
Best combined model (at age 2)

\[y = -1.388 \times \text{Min-N} + 80 \times \text{ESO CWI} - 3.05 \times \text{FOL N:P} + 66.4 \]

\[R^2 = 0.74; \quad C_p = 2.12 \]

\[P = <0.001 \]
Best combined model (at age 2)

\[y = -1.388 \times \text{Min-N} + 80 \times \text{ESO CWI} - 3.05 \times \text{FOL N:P} + 66.4 \]

\[R^2 = 0.74; \quad C_p = 2.12 \]

\[P = <0.001 \]

\[\uparrow R^2 \text{ by } 4\% \text{ compared with soil-based model} \]
Best combined model (at age 2)

\[y = -1.388 \times \text{Min-N} + 80 \times \text{ESO CWI} - 3.05 \times \text{FOL N:P} + 66.4 \]

\[R^2 = 0.74; \quad C_p = 2.12 \]

\[P = <0.001 \]

Does 4% justify an additional sample?
Best combined model (at age 2)

\[y = -1.388 \times \text{Min-N} + 80 \times \text{ESO CWI} - 3.05 \times \text{FOL N:P} + 66.4 \]

\[R^2 = 0.74; \, C_p = 2.12 \]

\[P = <0.001 \]

CWI, rather than MAR
Best combined model (at age 2)

\[y = -1.388 \times \text{Min}-N + 80 \times \text{ESO CWI} - 3.05 \times \text{FOL N:P} + 66.4 \]

\[R^2 = 0.74; \ C_p = 2.12 \]

\[P = <0.001 \]

One of the main reasons we explored alternative models
Best models (at age 4 or 10)

- Multiple models could still predict volume growth response to establishment fertiliser by age 4
 - R^2 decreased for best soil–based model
 - 70% \rightarrow 60%
 - R^2 increased for best foliar-based model
 - 49% \rightarrow 60%
 - Variables changed slightly; but still relied on Min-N (soil-based) and foliar N and P (foliar-based)

- No models could predict volume growth response by age 10
Alternative models: substitution of model variables

• What if you don’t have the variables required by the best models?

• Best soil-based model (age 2):
 – Min-N and ESO MAR; \(R^2 = 70\% \)
 • Swap ESO MAR with SILO MAR or CWI; \(R^2 = 65-68\% \)
 • Swap Min-N with total N; \(R^2 = 47\% \)

 – If you don’t have ESO MAR, other MAR-related variables can be substituted

 – Need Min-N
Alternative models: substitution of model variables

- Best foliar-based model (age 2):
 - Foliar N:P and N:S; $R^2 = 49$
 - Model already poor predictor
 - Second-best foliar model only uses Ca; $R^2 = 41$

- With only 49% of variance explained by this model, you most likely wouldn’t use it anyway...
Alternative models: substitution of model variables

• Best combined model (age 2):
 – Min-N, Foliar N:P and ESO CWI; $R^2 = 74\%$
 • Swapping climate variable; $R^2 = 70-72\%$
 • Swapping Min-N; $R^2 = 53-57\%$
 • Swapping Foliar N:P; $R^2 = 64\%$

 – Again, climate variables easily substituted
 – Model still relies heavily on Min-N = needed
Alternative models: substitution of model variables

- Same exercise for growth response to establishment fertiliser at age four
 - Similar effects
 - R^2 decreased from 60% to 50%
 - Model fit not strong in the first place
 - Substitution of variables not ideal
Synthesis

• **0-10 cm Min-N** = a strong predictor of growth response to establishment fertiliser
 – Especially 1-year post application
 – Marginally effective predictor by mid-rotation

• Performance as a predictor improves when combined with a measure of long-term site rainfall
 – Proxy for available water....?

• Other measures of soil or foliar N-status **could not** be effectively substituted for Min-N
Why is Min-N a good predictor?

• **Min-N = potentially mineralisable N**

 – Represents potential release of mineral N (NO$_3^-$ and NH$_4^+$) from soil

 • Extracted with KCl and **heat**

 • Release of microbial N and labile organic matter

 – Has been well correlated with aerobic and anaerobic biological incubation methods (Ros *et al.*, 2011)

 • Other extractions even better (potassium dichromate)
How to apply this information?

• Not going to solve all problems and can’t be used in isolation

• **BUT** – each model will estimate a % change in volume growth in response to fertiliser application
 – Our best models do this 1 year post-application
 – Of any use...?

• We think so --- use it to rank sites in terms of responsiveness
How to apply this information?

• Select model (equation!)
• Capture required pre-treatment inputs
 – Follow recommendations in report re: sample handling and analysis
• Calculate volume growth response to fertiliser
• Set minimum threshold for growth response
 – Based on your own economics – 10%, 20%?
• Apply fertiliser to those sites show a growth response > your threshold
How to apply this information?

• What’s the point if you can’t predict growth response to end of rotation?
 – It doesn’t mean there isn’t a growth response
 – Would you expect to be able to?

• At the very least, following this process will stop you from applying fertiliser at sites which definitely don’t need it
Validation: Old Experiments

• Do you have experiments with the required model inputs?
 – Or have legacy samples that could be re-tested?

• GREAT!
 – Calculate relative growth response to fertiliser for your experiments
 – Run the models you are interested in/have explanatory variables for
Validation: New Experiments

• Collaborative trials
 – Experimental design is relatively simple
 – Analytical and growth measurement costs
 – Management of experiment integrity
 – Paired-plot networks
 • Stape et al. 2006; Watt et al., 2008

• Check model requirements to make sure you get all the pre-treatment site information required
 – Develop strong empirical models
 – Properly validate process-based models
Final thoughts

• Most commonly said around the table:
 – “It’s not perfect, but it’s our best crack at it yet…”

• Palletise the pegs, roll up the flagging tape…?

• These models provide a system – something you can test and use
 – Much easier to test something when it’s there
 • best outcome is for people to show whether it does or doesn’t work